Towards precision cardiometabolic prevention: results from a machine learning, semi-supervised clustering approach in the nationwide population-based ORISCAV-LUX 2 study

Given the rapid increase in the incidence of cardiometabolic conditions, there is an urgent need for better approaches to prevent as many cases as possible and move from a one-size-fits-all approach to a precision cardiometabolic prevention strategy in the general population. We used data from ORISC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-08, Vol.11 (1), p.16056-16056, Article 16056
Hauptverfasser: Fagherazzi, Guy, Zhang, Lu, Aguayo, Gloria, Pastore, Jessica, Goetzinger, Catherine, Fischer, Aurélie, Malisoux, Laurent, Samouda, Hanen, Bohn, Torsten, Ruiz-Castell, Maria, Huiart, Laetitia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given the rapid increase in the incidence of cardiometabolic conditions, there is an urgent need for better approaches to prevent as many cases as possible and move from a one-size-fits-all approach to a precision cardiometabolic prevention strategy in the general population. We used data from ORISCAV-LUX 2, a nationwide, cross-sectional, population-based study. On the 1356 participants, we used a machine learning semi-supervised cluster method guided by body mass index (BMI) and glycated hemoglobin (HbA1c), and a set of 29 cardiometabolic variables, to identify subgroups of interest for cardiometabolic health. Cluster stability was assessed with the Jaccard similarity index. We have observed 4 clusters with a very high stability (ranging between 92 and 100%). Based on distinctive features that deviate from the overall population distribution, we have labeled Cluster 1 (N = 729, 53.76%) as “Healthy”, Cluster 2 (N = 508, 37.46%) as “Family history—Overweight—High Cholesterol “, Cluster 3 (N = 91, 6.71%) as “Severe Obesity—Prediabetes—Inflammation” and Cluster 4 (N = 28, 2.06%) as “Diabetes—Hypertension—Poor CV Health”. Our work provides an in-depth characterization and thus, a better understanding of cardiometabolic health in the general population. Our data suggest that such a clustering approach could now be used to define more targeted and tailored strategies for the prevention of cardiometabolic diseases at a population level. This study provides a first step towards precision cardiometabolic prevention and should be externally validated in other contexts.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-95487-5