Topologically Transitive and Mixing Properties of Set-Valued Dynamical Systems

We introduce and study two properties of dynamical systems: topologically transitive and topologically mixing under the set-valued setting. We prove some implications of these two properties for set-valued functions and generalize some results from a single-valued case to a set-valued case. We also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and applied analysis 2021, Vol.2021, p.1-7
Hauptverfasser: Wong, Koon Sang, Salleh, Zabidin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce and study two properties of dynamical systems: topologically transitive and topologically mixing under the set-valued setting. We prove some implications of these two properties for set-valued functions and generalize some results from a single-valued case to a set-valued case. We also show that both properties of set-valued dynamical systems are equivalence for any compact intervals.
ISSN:1085-3375
1687-0409
DOI:10.1155/2021/5541105