Green Synthesis of Fe3O4 Nanoparticles and Its Applications in Wastewater Treatment
In this paper, the extract of Citrus aurantium (CA) was used as a green approach for the preparation of Fe3O4 nanoparticles. The green Fe3O4 (Fe3O4/CA) was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy analysis (EDX), Fourier-trans...
Gespeichert in:
Veröffentlicht in: | Inorganics 2022-12, Vol.10 (12), p.260 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the extract of Citrus aurantium (CA) was used as a green approach for the preparation of Fe3O4 nanoparticles. The green Fe3O4 (Fe3O4/CA) was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy analysis (EDX), Fourier-transform infrared (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) surface area measurement, and vibrating sample magnetometry (VSM). The synthesized Fe3O4/CA was used to remove methylene blue (MB) dye from an aqueous solution. A four-factor central composite design (CCD), combined with response surface modeling (RSM), was used to maximize the MB dye removal. The four independent variables, which were initial dye concentration (10–50 mg/L), solution pH (3–9), adsorbent dose (ranging from 200–1000 mg/L), and contact time (30–90 min), were used as inputs to the model of the perecentage dye removal. The results yielded by an analysis of variance (ANOVA) confirmed the high significance of the regression model. The predicted values of the MB dye removal were in agreement with the corresponding experimental values. Optimized conditions for the maximum MB dye removal (93.14%) by Fe3O4/CA were the initial dye concentration (10.02 mg/L), pH (8.98), adsorbent mass (997.99 mg/L), and contact time (43.71 min). The validity of the quadratic model was examined, and good agreement was found between the experimental and predicted values. Our findings demonstrated that green Fe3O4NPs is a good adsorbent for MB removal. |
---|---|
ISSN: | 2304-6740 2304-6740 |
DOI: | 10.3390/inorganics10120260 |