Dietary Resveratrol Alleviates AFB1-Induced Ileum Damage in Ducks via the Nrf2 and NF-κB/NLRP3 Signaling Pathways and CYP1A1/2 Expressions

The aim of this study was to explore the mechanism underlying the protective effects of resveratrol against Aflatoxin B1-induced ileum injury in ducks. A corn–soybean meal-basal diet and two test diets (500 mg/kg resveratrol +0.2 mg Aflatoxin B1/kg, 0.2 mg AFB1/kg) were used in a 10-wk design trial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agriculture (Basel) 2022-01, Vol.12 (1), p.54
Hauptverfasser: Yang, Hao, Wang, Yingjie, Yu, Chunting, Jiao, Yihan, Zhang, Ruoshi, Jin, Sanjun, Feng, Xingjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to explore the mechanism underlying the protective effects of resveratrol against Aflatoxin B1-induced ileum injury in ducks. A corn–soybean meal-basal diet and two test diets (500 mg/kg resveratrol +0.2 mg Aflatoxin B1/kg, 0.2 mg AFB1/kg) were used in a 10-wk design trial (n = 15 ducks/group). These results showed that the toxicity of Aflatoxin B1 significantly reduced the antioxidant capacity of duck ileum and induced inflammation, oxidative stress, mitochondrial dysfunction and DNA damage in ducks. The expression of genes, including CYP1A2, CYP2A6, and CYP3A4, at the mRNA level was significantly upregulated (p < 0.05) by AFB1. The level of Nrf2 was suppressed (p < 0.05) and the mRNA and protein level of NF-κB was activated (p < 0.05) in the AFB1 group. However, supplementation with 500 mg/kg dietary resveratrol in Aflatoxin B1-induced ducks significantly ameliorated these alterations and decreased the mRNA expression of CYP1A1 and CYP1A2 (p < 0.05) and the production of AFB1-DNA adducts (p < 0.05). The results proved that resveratrol alleviated ileum injury induced by AFB1, decreased the production of AFB1-DNA adducts by downregulating the expression of CYP1A1 and CYP1A2, and reduced DNA damage and oxidative stress via the Nrf2/ Keap1 and NF-κB/NLRP3 signaling pathways.
ISSN:2077-0472
2077-0472
DOI:10.3390/agriculture12010054