Complete bipartite graph is a totally irregular total graph

A graph G is called a totally irregular total  k -graph if it has a totally irregular total k-labeling  λ : V ∪ E→  1, 2, ... , k, that is a total labeling such that for any pair of different vertices x and y of G, their weights wt(x) and wt(y) are distinct, and for any pair of different edges e and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of graph theory and applications 2021-01, Vol.9 (2), p.387-395
Hauptverfasser: Tilukay, Meilin I., Taihuttu, Pranaya D. M., Salman, A. N. M., Rumlawang, Francis Y., Leleury, Zeth A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A graph G is called a totally irregular total  k -graph if it has a totally irregular total k-labeling  λ : V ∪ E→  1, 2, ... , k, that is a total labeling such that for any pair of different vertices x and y of G, their weights wt(x) and wt(y) are distinct, and for any pair of different edges e and f of G, their weights wt(e) and wt(f) are distinct. The minimum value k under labeling  λ  is called the total irregularity strength of G, denoted by ts(G). For special cases of a complete bipartite graph  Km, n , the  ts(K1, n)  and the  ts(Kn, n)  are already determined for any positive integer n. Completing the results, this paper deals with the total irregularity strength of complete bipartite graph  Km, n  for any positive integer m and n.
ISSN:2338-2287
2338-2287
DOI:10.5614/ejgta.2021.9.2.11