Regularized Solution of Singularly Perturbed Cauchy Problem in the Presence of Rational “Simple” Turning Point in Two-Dimensional Case

By Lomov’s S.A. regularization method, we constructed an asymptotic solution of the singularly perturbed Cauchy problem in a two-dimensional case in the case of violation of stability conditions of the limit-operator spectrum. In particular, the problem with a ”simple” turning point was considered,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2019-11, Vol.8 (4), p.124
Hauptverfasser: Eliseev, Alexander, Ratnikova, Tatjana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By Lomov’s S.A. regularization method, we constructed an asymptotic solution of the singularly perturbed Cauchy problem in a two-dimensional case in the case of violation of stability conditions of the limit-operator spectrum. In particular, the problem with a ”simple” turning point was considered, i.e., one eigenvalue vanishes for t = 0 and has the form t m / n a ( t ) (limit operator is discretely irreversible). The regularization method allows us to construct an asymptotic solution that is uniform over the entire segment [ 0 , T ] , and under additional conditions on the parameters of the singularly perturbed problem and its right-hand side, the exact solution.
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms8040124