A Tailored Particle Swarm and Egyptian Vulture Optimization-Based Synthetic Minority-Oversampling Technique for Class Imbalance Problem

Class imbalance is one of the significant challenges in classification problems. The uneven distribution of data samples in different classes may occur due to human error, improper/unguided collection of data samples, etc. The uneven distribution of class samples among classes may affect the classif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information (Basel) 2022-08, Vol.13 (8), p.386
Hauptverfasser: Rout, Subhashree, Mallick, Pradeep Kumar, V. N. Reddy, Annapareddy, Kumar, Sachin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Class imbalance is one of the significant challenges in classification problems. The uneven distribution of data samples in different classes may occur due to human error, improper/unguided collection of data samples, etc. The uneven distribution of class samples among classes may affect the classification accuracy of the developed model. The main motivation behind this study is the design and development of methodologies for handling class imbalance problems. In this study, a new variant of the synthetic minority oversampling technique (SMOTE) has been proposed with the hybridization of particle swarm optimization (PSO) and Egyptian vulture (EV). The proposed method has been termed SMOTE-PSOEV in this study. The proposed method generates an optimized set of synthetic samples from traditional SMOTE and augments the five datasets for verification and validation. The SMOTE-PSOEV is then compared with existing SMOTE variants, i.e., Tomek Link, Borderline SMOTE1, Borderline SMOTE2, Distance SMOTE, and ADASYN. After data augmentation to the minority classes, the performance of SMOTE-PSOEV has been evaluated using support vector machine (SVM), Naïve Bayes (NB), and k-nearest-neighbor (k-NN) classifiers. The results illustrate that the proposed models achieved higher accuracy than existing SMOTE variants.
ISSN:2078-2489
2078-2489
DOI:10.3390/info13080386