Can Light Spectrum Composition Increase Growth and Nutritional Quality of Linum usitatissimum L. Sprouts and Microgreens?

Flaxseed could be suitable for obtaining high-quality sprouts and microgreens thanks to high amounts of nutrients and antioxidant, antidiabetic, and anticancer compound content in its seeds. Recent studies highlighted that seedling growth, nutritional compound, and secondary metabolite content can b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Horticulturae 2022-02, Vol.8 (2), p.98
Hauptverfasser: Puccinelli, Martina, Maggini, Rita, Angelini, Luciana G., Santin, Marco, Landi, Marco, Tavarini, Silvia, Castagna, Antonella, Incrocci, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flaxseed could be suitable for obtaining high-quality sprouts and microgreens thanks to high amounts of nutrients and antioxidant, antidiabetic, and anticancer compound content in its seeds. Recent studies highlighted that seedling growth, nutritional compound, and secondary metabolite content can be strongly managed by regulation of the light spectrum used during germination. The present study intended to shed light on flaxseed as emerging and novel species for sprouts and microgreens and to evaluate the effect of light, with different spectrum compositions (100% blue, 100% red, 100% green, and red:green:blue—1:1:1) on the performance of flax microgreens and sprouts grown indoors under controlled conditions. Microgreens showed, compared to sprouts, a higher chlorophyll (+62.6%), carotenoid (+24.4%), and phenol content (+37.8%), antioxidant capacity (+25.1%) and a lower dry matter content (−30.7%). Besides, microgreens treated with 100% blue light were characterized by the highest content of flavonoids (2.48 mg CAE g−1 FW), total phenols (3.76 mg GAE g−1 FW), chlorogenic acid (1.10 mg g−1 FW), and antioxidant capacity (8.06 µmol TEAC g−1 FW). The paper demonstrates the feasibility of obtaining flax sprouts and microgreens indoors with a considerable antioxidant capacity and health-promoting compounds by modulating the light spectrum.
ISSN:2311-7524
2311-7524
DOI:10.3390/horticulturae8020098