Edge Federated Optimization for Heterogeneous Data
This study focuses on optimizing federated learning in heterogeneous data environments. We implement the FedProx and a baseline algorithm (i.e., the FedAvg) with advanced optimization strategies to tackle non-IID data issues in distributed learning. Model freezing and pruning techniques are explored...
Gespeichert in:
Veröffentlicht in: | Future internet 2024-04, Vol.16 (4), p.142 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study focuses on optimizing federated learning in heterogeneous data environments. We implement the FedProx and a baseline algorithm (i.e., the FedAvg) with advanced optimization strategies to tackle non-IID data issues in distributed learning. Model freezing and pruning techniques are explored to showcase the effective operations of deep learning models on resource-constrained edge devices. Experimental results show that at a pruning rate of 10%, the FedProx with structured pruning in the MIT-BIH and ST databases achieved the best F1 scores, reaching 96.01% and 77.81%, respectively, which achieves a good balance between system efficiency and model accuracy compared to those of the FedProx with the original configuration, reaching F1 scores of 66.12% and 89.90%, respectively. Similarly, with layer freezing technique, unstructured pruning method, and a pruning rate of 20%, the FedAvg algorithm effectively balances classification performance and degradation of pruned model accuracy, achieving F1 scores of 88.75% and 72.75%, respectively, compared to those of the FedAvg with the original configuration, reaching 56.82% and 85.80%, respectively. By adopting model optimization strategies, a practical solution is developed for deploying complex models in edge federated learning, vital for its efficient implementation. |
---|---|
ISSN: | 1999-5903 1999-5903 |
DOI: | 10.3390/fi16040142 |