Edge Federated Optimization for Heterogeneous Data

This study focuses on optimizing federated learning in heterogeneous data environments. We implement the FedProx and a baseline algorithm (i.e., the FedAvg) with advanced optimization strategies to tackle non-IID data issues in distributed learning. Model freezing and pruning techniques are explored...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future internet 2024-04, Vol.16 (4), p.142
Hauptverfasser: Lin, Hsin-Tung, Wen, Chih-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study focuses on optimizing federated learning in heterogeneous data environments. We implement the FedProx and a baseline algorithm (i.e., the FedAvg) with advanced optimization strategies to tackle non-IID data issues in distributed learning. Model freezing and pruning techniques are explored to showcase the effective operations of deep learning models on resource-constrained edge devices. Experimental results show that at a pruning rate of 10%, the FedProx with structured pruning in the MIT-BIH and ST databases achieved the best F1 scores, reaching 96.01% and 77.81%, respectively, which achieves a good balance between system efficiency and model accuracy compared to those of the FedProx with the original configuration, reaching F1 scores of 66.12% and 89.90%, respectively. Similarly, with layer freezing technique, unstructured pruning method, and a pruning rate of 20%, the FedAvg algorithm effectively balances classification performance and degradation of pruned model accuracy, achieving F1 scores of 88.75% and 72.75%, respectively, compared to those of the FedAvg with the original configuration, reaching 56.82% and 85.80%, respectively. By adopting model optimization strategies, a practical solution is developed for deploying complex models in edge federated learning, vital for its efficient implementation.
ISSN:1999-5903
1999-5903
DOI:10.3390/fi16040142