Electric vehicle load forecasting based on convolutional networks with attention mechanism and federated learning method

Accurate forecasting of electric vehicle (EV) load is essential for grid stability and energy management. EV load forecasting is influenced by multiple factors. At present, the load forecasting model for EVs mainly uses collected sample data to build a data‐driven model. But these algorithms need to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET generation, transmission & distribution transmission & distribution, 2024-07, Vol.18 (13), p.2313-2324
Hauptverfasser: Bian, Ruien, Wang, Long, Liu, Yadong, Dai, Zhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate forecasting of electric vehicle (EV) load is essential for grid stability and energy management. EV load forecasting is influenced by multiple factors. At present, the load forecasting model for EVs mainly uses collected sample data to build a data‐driven model. But these algorithms need to collect all the data together to train the model, ignoring the privacy of each data collection source. In a competitive market environment, each device service provider is not willing to share the sample data they store. Aiming at this problem, this paper proposes an EV load diagnosis algorithm considering data privacy. Firstly, a convolutional neural network with dual attention mechanism is constructed as the basic time series forecasting model. The association rule algorithm is used to select weather data with strong associations as the inputs of the model. Each service provider uses local data to perform deep learning network. All models are then trained using a federated learning framework. During the entire training process, historical data is stored locally, and only model parameter information is shared and interacted; thus data privacy is protected. Finally, the validity of the algorithm in this paper is verified by using real collected EV load data. This paper proposes an electric vehicle (EV) load diagnosis algorithm considering data privacy. The validity of the algorithm in this paper is verified by using the real collected EV load data.
ISSN:1751-8687
1751-8695
DOI:10.1049/gtd2.13192