Algorithmic Solutions for Computing Precise Maximum Likelihood 3D Point Clouds from Mobile Laser Scanning Platforms

Mobile laser scanning puts high requirements on the accuracy of the positioning systems and the calibration of the measurement system. We present a novel algorithmic approach for calibration with the goal of improving the measurement accuracy of mobile laser scanners. We describe a general framework...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2013-11, Vol.5 (11), p.5871-5906
Hauptverfasser: Elseberg, Jan, Borrmann, Dorit, Nüchter, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mobile laser scanning puts high requirements on the accuracy of the positioning systems and the calibration of the measurement system. We present a novel algorithmic approach for calibration with the goal of improving the measurement accuracy of mobile laser scanners. We describe a general framework for calibrating mobile sensor platforms that estimates all configuration parameters for any arrangement of positioning sensors, including odometry. In addition, we present a novel semi-rigid Simultaneous Localization and Mapping (SLAM) algorithm that corrects the vehicle position at every point in time along its trajectory, while simultaneously improving the quality and precision of the entire acquired point cloud. Using this algorithm, the temporary failure of accurate external positioning systems or the lack thereof can be compensated for. We demonstrate the capabilities of the two newly proposed algorithms on a wide variety of datasets.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs5115871