Physical Modelling of High Stiffness Large Diameter Steel Tubular Pile Subjected to One-Way Horizontal Cyclic Loading

Two centrifuge model tests were conducted, each with three large diameter steel tubular piles installed under similar conditions, i.e., diameter (Φ) = 2 m; thickness (t) = 25 mm; loading height from the rock surface (HL) = 6.5 m, but different rock socketing depths (dr), i.e., 2 m, 3 m, and 4 m, res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geotechnics (Basel) 2023-06, Vol.3 (2), p.515-530
Hauptverfasser: Shafi, S M, Takemura, Jiro, Kunasegaram, Vijayakanthan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two centrifuge model tests were conducted, each with three large diameter steel tubular piles installed under similar conditions, i.e., diameter (Φ) = 2 m; thickness (t) = 25 mm; loading height from the rock surface (HL) = 6.5 m, but different rock socketing depths (dr), i.e., 2 m, 3 m, and 4 m, respectively, in prototype scale. Two additional 1 g model tests were conducted using the same model pile and ground. The results indicate that the pile lateral resistance increased with an increase in the rock socketing depth to diameter ratio (dr/Φ) in both 1 g and 50 g models. However, the difference between the two gravitational acceleration levels became visible in the non-linear behaviour as the imposed displacement increased. Specifically, the 1 g models showed larger residual displacement and less stiffness in reloading than the 50 g models, particularly under cyclic loading. Two types of ultimate failure modes were observed, i.e., rock failure and pile structural failure with local buckling just above the rock surface. The latter failure mode was only attained in the pile with a dr/Φ ratio of 2 in a 50 g models among the test conditions adopted in the models, but not in the 1 g model.
ISSN:2673-7094
2673-7094
DOI:10.3390/geotechnics3020028