Sulfur Protects Pakchoi (Brassica chinensis L.) Seedlings against Cadmium Stress by Regulating Ascorbate-Glutathione Metabolism

Cadmium (Cd) pollution in food chains pose a potential health risk for humans. Sulfur (S) is a significant macronutrient that plays a significant role in the regulation of plant responses to diverse biotic and abiotic stresses. However, no information is currently available about the impact of S app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2017-07, Vol.18 (8), p.1628
Hauptverfasser: Lou, Lili, Kang, Jingquan, Pang, Hongxi, Li, Qiuyu, Du, Xiaoping, Wu, Wei, Chen, Junxiu, Lv, Jinyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cadmium (Cd) pollution in food chains pose a potential health risk for humans. Sulfur (S) is a significant macronutrient that plays a significant role in the regulation of plant responses to diverse biotic and abiotic stresses. However, no information is currently available about the impact of S application on ascorbate-glutathione metabolism (ASA-GSH cycle) of Pakchoi plants under Cd stress. The two previously identified genotypes, namely, Aikangqing (a Cd-tolerant cultivar) and Qibaoqing (a Cd-sensitive cultivar), were utilized to investigate the role of S to mitigate Cd toxicity in Pakchoi plants under different Cd regimes. Results showed that Cd stress inhibited plant growth and induced oxidative stress. Exogenous application of S significantly increased the tolerance of Pakchoi seedlings suffering from Cd stress. This effect was demonstrated by increased growth parameters; stimulated activities of the antioxidant enzymes and upregulated genes involved in the ASA-GSH cycle and S assimilation; and by the enhanced ASA, GSH, phytochelatins, and nonprotein thiol production. This study shows that applying S nutrition can mitigate Cd toxicity in Pakchoi plants which has the potential in assisting the development of breeding strategies aimed at limiting Cd phytoaccumulation and decreasing Cd hazards in the food chain.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms18081628