Identification of essential genes for Escherichia coli aryl polyene biosynthesis and function in biofilm formation

Aryl polyenes (APEs) are specialized polyunsaturated carboxylic acids that were identified in silico as the product of the most widespread family of bacterial biosynthetic gene clusters (BGCs). They are present in several Gram-negative host-associated bacteria, including multidrug-resistant human pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ biofilms and microbiomes 2021-07, Vol.7 (1), p.56-56, Article 56
Hauptverfasser: Johnston, Isabel, Osborn, Lucas J., Markley, Rachel L., McManus, Elizabeth A., Kadam, Anagha, Schultz, Karlee B., Nagajothi, Nagashreyaa, Ahern, Philip P., Brown, J. Mark, Claesen, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aryl polyenes (APEs) are specialized polyunsaturated carboxylic acids that were identified in silico as the product of the most widespread family of bacterial biosynthetic gene clusters (BGCs). They are present in several Gram-negative host-associated bacteria, including multidrug-resistant human pathogens. Here, we characterize a biological function of APEs, focusing on the BGC from a uropathogenic Escherichia coli (UPEC) strain. We first perform a genetic deletion analysis to identify the essential genes required for APE biosynthesis. Next, we show that APEs function as fitness factors that increase protection from oxidative stress and contribute to biofilm formation. Together, our study highlights key steps in the APE biosynthesis pathway that can be explored as potential drug targets for complementary strategies to reduce fitness and prevent biofilm formation of multi-drug resistant pathogens.
ISSN:2055-5008
2055-5008
DOI:10.1038/s41522-021-00226-3