The role of transient receptor potential vanilloid type-2 ion channels in innate and adaptive immune responses
The transient receptor potential vanilloid type-2 (TRPV2), belonging to the transient receptor potential channel family, is a specialized ion channel expressed in human and other mammalian immune cells. This channel has been found to be expressed in CD34(+) hematopoietic stem cells, where its cytoso...
Gespeichert in:
Veröffentlicht in: | Frontiers in immunology 2013, Vol.4, p.34-34 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The transient receptor potential vanilloid type-2 (TRPV2), belonging to the transient receptor potential channel family, is a specialized ion channel expressed in human and other mammalian immune cells. This channel has been found to be expressed in CD34(+) hematopoietic stem cells, where its cytosolic Ca(2) (+) activity is crucial for stem/progenitor cell cycle progression, growth, and differentiation. In innate immune cells, TRPV2 is expressed in granulocytes, macrophages, and monocytes where it stimulates fMet-Leu-Phe migration, zymosan-, immunoglobulin G-, and complement-mediated phagocytosis, and lipopolysaccharide-induced tumor necrosis factor-alpha and interleukin-6 production. In mast cells, activation of TRPV2 allows intracellular Ca(2) (+) ions flux, thus stimulating protein kinase A-dependent degranulation. In addition, TRPV2 is highly expressed in CD56(+) natural killer cells. TRPV2 orchestrates Ca(2) (+) signal in T cell activation, proliferation, and effector functions. Moreover, messenger RNA for TRPV2 are expressed in CD4(+) and CD8(+) T lymphocytes. Finally, TRPV2 is expressed in CD19(+) B lymphocytes where it regulates Ca(2) (+) release during B cell development and activation. Overall, the specific expression of TRPV2 in immune cells suggests a role in immune-mediated diseases and offers new potential targets for immunomodulation. |
---|---|
ISSN: | 1664-3224 1664-3224 |
DOI: | 10.3389/fimmu.2013.00034 |