BplMYB46 from Betula platyphylla Can Form Homodimers and Heterodimers and Is Involved in Salt and Osmotic Stresses

MYB proteins play important roles in the regulation of plant growth, development, and stress responses. Overexpression of from improved plant salt and osmotic tolerances. In the present study, the interaction of eight avian myeloblastosis viral oncogene homolog (MYB) transcription factors with BplMY...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2019-03, Vol.20 (5), p.1171
Hauptverfasser: Wang, Yan-Min, Wang, Chao, Guo, Hui-Yan, Wang, Yu-Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MYB proteins play important roles in the regulation of plant growth, development, and stress responses. Overexpression of from improved plant salt and osmotic tolerances. In the present study, the interaction of eight avian myeloblastosis viral oncogene homolog (MYB) transcription factors with BplMYB46 was investigated using the yeast two-hybrid system, which showed that BplMYB46 could form homodimers and heterodimers with BplMYB6, BplMYB8, BplMYB11, BplMYB12, and BplMYB13. Relative beta-glucuronidase activity and chromatin immunoprecipitation assays showed that the interaction between BplMYB46 and the five MYBs increased the binding of BplMYB46 to the MYBCORE motif. A subcellular localization study showed that these MYBs were all located in the nucleus. Real-time fluorescence quantitative PCR results indicated that the expressions of and the five genes could be induced by salt and osmotic stress, and the and exhibited the most similar expression patterns. and co-overexpression in tobacco using transient transformation technology improved tobacco's tolerance to salt and osmotic stresses compared with overexpressing or alone. Taken together, these results demonstrated that BplMYB46 could interact with five other MYBs to form heterodimers that activate the transcription of target genes via an enhanced binding ability to the MYBCORE motif to mediate reactive oxygen species scavenging in response to salt and osmotic stresses.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms20051171