Optimal Sizing of Solar-Assisted Heat Pump Systems for Residential Buildings

This paper analyzes the optimal sizing of a particular solution for renewable energy residential building integration. The solution combines a photovoltaic (PV) plant with a heat pump (HP). The idea is to develop a system that permits the maximum level of self-consumption of renewable energy generat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Buildings (Basel) 2020-10, Vol.10 (10), p.175
Hauptverfasser: Franco, Alessandro, Fantozzi, Fabio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper analyzes the optimal sizing of a particular solution for renewable energy residential building integration. The solution combines a photovoltaic (PV) plant with a heat pump (HP). The idea is to develop a system that permits the maximum level of self-consumption of renewable energy generated by using a small-scale solar array installed on the same building. The problem is analyzed using data obtained from an experimental system installed in a building in Pisa, Italy. The residential house was equipped with a PV plant (about 3.7 kW of peak power), assisting a HP of similar electrical power (3.8 kW). The system was monitored for eight years of continuous operation. With reference to the data acquired from the long-term experimental analysis and considering a more general perspective, we discuss criteria and guidelines for the design of such a system. We focus on the possibility of exporting energy to the electrical grid, from the perspective of obtaining self-consumption schemes. Considering that one of the problems with small-scale PV plants is represented by the bidirectional energy flows from and to the grid, possible alternative solutions for the design are outlined, with both a size reduction in the plant and utilization of a storage system considered. Different design objectives are considered in the analysis.
ISSN:2075-5309
2075-5309
DOI:10.3390/buildings10100175