Pre-pregnancy body mass index combined with peripheral blood PLGF, DCN, LDH, and UA in a risk prediction model for pre-eclampsia

This study analyzes the levels of peripheral blood placental growth factor (PLGF), body mass index (BMI), decorin (DCN), lactate dehydrogenase (LDH), uric acid (UA), and clinical indicators of patients with preeclampsia (PE), and establishes a predictive risk model of PE, which can provide a referen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in endocrinology (Lausanne) 2024-01, Vol.14, p.1297731-1297731
Hauptverfasser: Zhou, Yanna, Xiao, Chunhai, Yang, Yiting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study analyzes the levels of peripheral blood placental growth factor (PLGF), body mass index (BMI), decorin (DCN), lactate dehydrogenase (LDH), uric acid (UA), and clinical indicators of patients with preeclampsia (PE), and establishes a predictive risk model of PE, which can provide a reference for early and effective prediction of PE. 81 cases of pregnant women with PE who had regular prenatal checkups and delivered in Jinshan Branch of Shanghai Sixth People's Hospital from June 2020 to December 2022 were analyzed, and 92 pregnant women with normal pregnancies who had their antenatal checkups and delivered at the hospital during the same period were selected as the control group. Clinical data and peripheral blood levels of PLGF, DCN, LDH, and UA were recorded, and the two groups were subjected to univariate screening and multifactorial logistic regression analysis. Based on the screening results, the diagnostic efficacy of PE was evaluated using the receiver operating characteristic (ROC) curve. Risk prediction nomogram model was constructed using language. The Bootstrap method (self-sampling method) was used to validate and produce calibration plots; the decision curve analysis (DCA) was used to assess the clinical benefit rate of the model. There were statistically significant differences in age, pre-pregnancy BMI, gestational weight gain, history of PE or family history, family history of hypertension, gestational diabetes mellitus, and history of renal disease between the two groups (P < 0.05). The results of multifactorial binary logistic stepwise regression revealed that peripheral blood levels of PLGF, DCN, LDH, UA, and pre-pregnancy BMI were independent influences on the occurrence of PE (P < 0.05). The area under the curve of PLGF, DCN, LDH, UA levels and pre-pregnancy BMI in the detection of PE was 0.952, with a sensitivity of 0.901 and a specificity of 0.913, which is better than a single clinical diagnostic indicator. The results of multifactor analysis were constructed as a nomogram model, and the mean absolute error of the calibration curve of the modeling set was 0.023, suggesting that the predictive probability of the model was generally compatible with the actual value. DCA showed the predictive model had a high net benefit in the range of 5% to 85%, suggesting that the model has clinical utility value. The occurrence of PE is related to the peripheral blood levels of PLGF, DCN, LDH, UA and pre-pregnancy BMI, and the combination o
ISSN:1664-2392
1664-2392
DOI:10.3389/fendo.2023.1297731