Enzymatic Hydrolytic Resolution of Racemic Ibuprofen Ethyl Ester Using an Ionic Liquid as Cosolvent
The aim of this study was to develop an ionic liquid (IL) system for the enzymatic resolution of racemic ibuprofen ethyl ester to produce (S)-ibuprofen. Nineteen ILs were selected for use in buffer systems to investigate the effects of ILs as cosolvents for the production of (S)-ibuprofen using ther...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2016-07, Vol.21 (7), p.905 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this study was to develop an ionic liquid (IL) system for the enzymatic resolution of racemic ibuprofen ethyl ester to produce (S)-ibuprofen. Nineteen ILs were selected for use in buffer systems to investigate the effects of ILs as cosolvents for the production of (S)-ibuprofen using thermostable esterase (EST10) from Thermotoga maritima. Analysis of the catalytic efficiency and conformation of EST10 showed that [OmPy][BF₄] was the best medium for the EST10-catalyzed production of (S)-ibuprofen. The maximum degree of conversion degree (47.4%), enantiomeric excess of (S)-ibuprofen (96.6%) and enantiomeric ratio of EST10 (177.0) were achieved with an EST10 concentration of 15 mg/mL, racemic ibuprofen ethyl ester concentration of 150 mM, at 75 °C , with a reaction time of 10 h. The reaction time needed to achieve the highest yield of (S)-ibuprofen was decreased from 24 h to 10 h. These results are relevant to the proposed application of ILs as solvents for the EST10-catalyzed production of (S)-ibuprofen. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules21070905 |