Adaptive Nonsingular Terminal Sliding Mode Control for Attitude Tracking of Spacecraft With Actuator Faults

In this paper, an adaptive nonsingular terminal sliding mode control (ANTSMC) is investigated for attitude tracking of spacecraft with actuator faults. First, a nonsingular fast terminal sliding mode surface is designed to avoid the singularity. Finite-time attitude control is developed using the no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.31485-31493
Hauptverfasser: Jing, Chenghu, Xu, Hongguang, Niu, Xinjian, Song, Xiaoming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, an adaptive nonsingular terminal sliding mode control (ANTSMC) is investigated for attitude tracking of spacecraft with actuator faults. First, a nonsingular fast terminal sliding mode surface is designed to avoid the singularity. Finite-time attitude control is developed using the nonsingular terminal sliding mode technique, which can make the attitude and angular velocity tracking errors converge to zero in finite time in the presence of uncertainties and external disturbances. Second, the total uncertainty is deduced to be bounded. The adaptive laws are incorporated to develop the ANTSMC, removing the restriction on the upper bound of the lumped uncertainty. The finite-time convergence of the closed-loop system with ANTSMC is proved using the Lyapunov stability theory. Finally, the simulation results are presented to demonstrate the performance of the proposed controllers.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2902671