Assessing the Influence of Vehicular Traffic-Associated Atmospheric Pollutants on Pulmonary Function Using Spirometry and Impulse Oscillometry in Healthy Participants: Insights from Bogotá, 2020–2021

Air pollution, particularly from particulate matter (PM2.5) and black carbon (eBC), has been implicated in airway pathologies. This study aims to assess the relationship between exposure to these pollutants and respiratory function in various populations, including healthy individuals, while seeking...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmosphere 2024-06, Vol.15 (6), p.688
Hauptverfasser: Almentero, Julia Edith, Hernández, Andrea Rico, Soto, Hanna, García, Andrés, Toloza-Pérez, Yesith Guillermo, Malagón-Rojas, Jeadran N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Air pollution, particularly from particulate matter (PM2.5) and black carbon (eBC), has been implicated in airway pathologies. This study aims to assess the relationship between exposure to these pollutants and respiratory function in various populations, including healthy individuals, while seeking an accurate assessment method. A cross-sectional study was conducted in Bogotá, evaluating respiratory function in the users of bicycles, minivans, and buses through spirometry and impulse oscillometry. Measurements were taken along two main avenues, assessing the PM2.5 and eBC concentrations. The results reveal higher pollutant levels on AVE KR 9, correlating with changes in oscillometry values post-travel. Cyclists exhibited differing pre- and post-travel values compared to bus and minivan users, suggesting aerobic exercise mitigates pollutant impacts. However, no statistically significant spirometry or impulse oscillometry variations were observed among routes or modes. Public transport and minivan users showed greater PM2.5 and eBC exposure, yet no significant changes associated with environmental contaminants were found in respiratory function values. These findings underscore the importance of further research on pollutant effects and respiratory health in urban environments, particularly concerning different transport modes.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos15060688