Intragland Expression of the Shh Gene Alleviates Irradiation-Induced Salivary Gland Injury through Microvessel Protection and the Regulation of Oxidative Stress

Radiation-induced salivary gland injury (RISGI) is a common complication of radiotherapy in patients with head and neck cancer. Intragland expression of the Sonic Hedgehog (Shh) gene may partially rescue irradiation (IR)-induced hyposalivation by preserving salivary stem/progenitor cells and parasym...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants 2024-07, Vol.13 (8), p.904
Hauptverfasser: Hu, Meijun, Hu, Liang, Yang, Tao, Zhou, Bowen, Feng, Xuanhe, Fan, Zhipeng, Shan, Zhaochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radiation-induced salivary gland injury (RISGI) is a common complication of radiotherapy in patients with head and neck cancer. Intragland expression of the Sonic Hedgehog (Shh) gene may partially rescue irradiation (IR)-induced hyposalivation by preserving salivary stem/progenitor cells and parasympathetic innervation, maintaining resident macrophages, and maintaining microvascular density. Previous studies have revealed that Ad-Rat Shh transduction through the salivary glands of miniature pigs can ameliorate oxidative stress-induced microvascular dysfunction after radiotherapy. Changes in the parotid salivary flow rate were analyzed, and the parotid tissue was collected at 5 and 20 weeks after IR. Changes in the Hedgehog pathway and vascular function-related markers (vascular endothelial growth factor (VEGF) and CD31) and oxidative stress-related markers were detected via immunohistochemistry, immunofluorescence, and Western blotting. A stable Shh-overexpressing cell line was generated from human umbilical vein endothelial cells (HUVECs) and exposed to 10 Gy X-ray irradiation, after which endothelial cell proliferation, senescence, apoptosis, and vascular function were evaluated. We found that intragland expression of the Shh gene efficiently alleviated IR-induced parotid gland injury in a miniature pig model. Our results indicate that the antioxidative stress and microvascular-protective effects of the Hh pathway are regulated by nuclear factor-erythroid 2-related factor 2 (Nrf2).
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox13080904