Protein-directed ribosomal frameshifting temporally regulates gene expression

Programmed −1 ribosomal frameshifting is a mechanism of gene expression, whereby specific signals within messenger RNAs direct a proportion of translating ribosomes to shift −1 nt and continue translating in the new reading frame. Such frameshifting normally occurs at a set ratio and is utilized in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2017-06, Vol.8 (1), p.15582-15582, Article 15582
Hauptverfasser: Napthine, Sawsan, Ling, Roger, Finch, Leanne K., Jones, Joshua D., Bell, Susanne, Brierley, Ian, Firth, Andrew E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Programmed −1 ribosomal frameshifting is a mechanism of gene expression, whereby specific signals within messenger RNAs direct a proportion of translating ribosomes to shift −1 nt and continue translating in the new reading frame. Such frameshifting normally occurs at a set ratio and is utilized in the expression of many viral genes and a number of cellular genes. An open question is whether proteins might function as trans -acting switches to turn frameshifting on or off in response to cellular conditions. Here we show that frameshifting in a model RNA virus, encephalomyocarditis virus, is trans -activated by viral protein 2A. As a result, the frameshifting efficiency increases from 0 to 70% (one of the highest known in a mammalian system) over the course of infection, temporally regulating the expression levels of the viral structural and enzymatic proteins. Programmed −1 ribosomal frameshifting (−1 PRF) is a mechanism whereby specific signals within mRNAs direct ribosomes to shift into an alternative reading frame. Here the authors describe a mechanism of −1 PRF that is temporally regulated by a viral protein over the course of the virus replicative cycle.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms15582