Modeling subgrid lake energy balance in ORCHIDEE terrestrial scheme using the FLake lake model
The freshwater 1-D FLake lake model was coupled to the ORCHIDEE land surface model to simulate lake energy balance at the global scale. A multi-tile approach has been chosen to allow the modeling of various types of lakes within the ORCHIDEE grid cell. Thus, three different lake tiles have been defi...
Gespeichert in:
Veröffentlicht in: | Geoscientific Model Development 2022-06, Vol.15 (10), p.4275-4295 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The freshwater 1-D FLake lake model was coupled to the ORCHIDEE land surface model to simulate lake energy balance at the global scale. A multi-tile approach has been chosen to allow the modeling of various types of lakes within the ORCHIDEE grid cell. Thus, three different lake tiles have been defined according to lake depth which is the most influential parameter of FLake, but other properties could be considered in the future. Several depth parameterization strategies have been compared, differing by the way to aggregate the depth of the subgrid lakes, i.e., arithmetical, geometrical, harmonical mean and median. Five atmospheric reanalysis datasets available at 0.5.sup." or 0.25.sup." resolution have been used to force the model and assess model systematic errors. Simulations have been performed, evaluated and intercompared against observations of lake water surface temperatures provided by the GloboLakes database over about 1000 lakes and ice phenology derived from the Global Lake and River Ice Phenology database. |
---|---|
ISSN: | 1991-9603 1991-959X 1991-962X 1991-9603 1991-962X 1991-959X |
DOI: | 10.5194/gmd-15-4275-2022 |