The Influence of Polymerization Type and Reinforcement Method on Flexural Strength of Acrylic Resin

The aim of this study was to evaluate the flexural strength of acrylic resin bars by varying the types of resin polymerization and reinforcement methods. Fourteen groups (N=10) were created by the interaction of factors in study: type of resin (self-cured (SC) or heat-cured (HC)) and reinforcement m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TheScientificWorld 2015, Vol.2015 (2015), p.1-8
Hauptverfasser: Naves, Lucas Zago, Favarão, Isabella Negro, Kasuya, Amanda Vessoni Barbosa, Fonseca, Rodrigo Borges, Hoeppner, Márcio Grama
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to evaluate the flexural strength of acrylic resin bars by varying the types of resin polymerization and reinforcement methods. Fourteen groups (N=10) were created by the interaction of factors in study: type of resin (self-cured (SC) or heat-cured (HC)) and reinforcement method (industrialized glass fiber (Ind), unidirectional glass fiber (Uni), short glass fiber (Short), unidirectional and short glass fiber (Uni-Short), thermoplastic resin fiber (Tpl), and steel wire (SW)). Reinforced bars (25×2×2 mm) were tested in flexural strength (0.5 mm/min) and examined by scanning electron microscopy (SEM). Data (MPa) were submitted to factorial analysis, ANOVA, and Tukey and T-student tests (a=5%) showing significant interaction (P=0.008), for SC: Uni (241.71±67.77)a, Uni-Short (221.05±71.97)a, Ind (215.21±46.59)ab, SW (190.51±31.49)abc, Short (156.31±28.76)bcd, Tpl (132.51±20.21)cd, Control SC (101.47±19.79)d and for HC: Ind (268.93±105.65)a, Uni (215.14±67.60)ab, Short (198.44±95.27)abc, Uni-Short (189.56±92.27)abc, Tpl (161.32±62.51)cd, SW (106.69±28.70)cd, and Control HC (93.39±39.61)d. SEM analysis showed better fiber-resin interaction for HC. Nonimpregnated fibers, irrespective of their length, tend to improve fracture strength of acrylics.
ISSN:2356-6140
1537-744X
1537-744X
DOI:10.1155/2015/919142