Studies on the relationships of the Curie surface with heat flow and crustal structures in Yunnan Province, China, and its adjacent areas

A Curie surface indicates the distribution of the thermal fields underground, providing a clear marker for the thermodynamic effect in the crust and mantle. In this paper, based on a geomagnetic field model (NGDC-720) and aeromagnetic data, we use power spectrum analysis of magnetic anomalies to est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth, planets, and space planets, and space, 2019-08, Vol.71 (1), p.1-19, Article 85
Hauptverfasser: Wen, Limin, Kang, Guofa, Bai, Chunhua, Gao, Guoming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Curie surface indicates the distribution of the thermal fields underground, providing a clear marker for the thermodynamic effect in the crust and mantle. In this paper, based on a geomagnetic field model (NGDC-720) and aeromagnetic data, we use power spectrum analysis of magnetic anomalies to estimate the Curie surface in Yunnan Province, China, and its adjacent areas. By combining the distribution of the Curie surface with regional heat flow, the geothermal gradient, crustal wave velocity ratio anomalies, high-conductivity layer anomalies, and the Moho surface, we reveal the connection between the undulation of the magnetic basement and the crustal structures. The results indicate that the uplift and depression of the Curie surface in the research area are distinct. The Curie surface is approximately inversely correlated to the surface heat flow. The Lijiang-Jianchuan-Baoshan-Tengchong and Jianchuan- Chuxiong- Kunming-Yuxi zones are two Curie surface uplift zones, and their crust-mantle heat flows are relatively high. The Curie surface uplift zone along the Lijiang-Xiaojinhe fault and Red River fault is consistent with the heading direction of the fault zone and is partially in agreement with the eastward mass flow of the Tibetan Plateau. The Curie surface uplift zone is consistent with the high wave velocity ratio and high-conductivity layer anomaly region of the crust. The depth of the Curie surface is less than the depth of the Moho surface.
ISSN:1880-5981
1343-8832
1880-5981
DOI:10.1186/s40623-019-1063-1