On w-Neat Rings
In this paper, we offer a new generalization of the neat ring that is called a w-neat ring. A ring $ R $ is said to be weakly clean if every $ r\in R $ can be written as $ r=u+e $ or $ r=u-e $ where $ u\in$ U$(R) $ and $ e\in$ Id$(R) $. We define a w-neat ring to be one for which every p...
Gespeichert in:
Veröffentlicht in: | Mathematics interdisciplinary research (Online) 2023-03, Vol.8 (1), p.65-70 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we offer a new generalization of the neat ring that is called a w-neat ring. A ring $ R $ is said to be weakly clean if every $ r\in R $ can be written as $ r=u+e $ or $ r=u-e $ where $ u\in$ U$(R) $ and $ e\in$ Id$(R) $. We define a w-neat ring to be one for which every proper homomorphic image is weakly clean.We obtain some properties of w-neat rings. |
---|---|
ISSN: | 2476-4965 |
DOI: | 10.22052/mir.2022.248393.1375 |