On w-Neat Rings

‎In this paper‎, ‎we offer a new generalization of the neat ring that is called a w-neat ring‎. ‎A ring $ R $ is said to be weakly clean if every $ r\in R $ can be written as $ r=u+e $ or $ r=u-e $ where $ u\in‎$ U$(R) $ and $ e\in‎$ I‎‏d$‎(R) $‎. ‎We define a w-neat ring to be one for which every p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics interdisciplinary research (Online) 2023-03, Vol.8 (1), p.65-70
1. Verfasser: Fatemeh Rashedi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:‎In this paper‎, ‎we offer a new generalization of the neat ring that is called a w-neat ring‎. ‎A ring $ R $ is said to be weakly clean if every $ r\in R $ can be written as $ r=u+e $ or $ r=u-e $ where $ u\in‎$ U$(R) $ and $ e\in‎$ I‎‏d$‎(R) $‎. ‎We define a w-neat ring to be one for which every proper homomorphic image is weakly clean‎.‎We obtain some properties of w-neat rings‎.
ISSN:2476-4965
DOI:10.22052/mir.2022.248393.1375