Investigation of AC-Measurements of Epoxy/Ferrite Composites

A pure ferrite and epoxy samples as well as the epoxy/ferrite composites with different 20 wt.%, 30 wt.%, 40 wt.%, and 50 wt.% weight ferrite contents have been prepared by the chemical co-precipitation method. AC-conductivity and dielectric properties such as the dielectric constant and dielectric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-03, Vol.10 (3), p.492
Hauptverfasser: Darwish, Moustafa A, Trukhanov, Alex V, Senatov, Oleg S, Morchenko, Alexander T, Saafan, Samia A, Astapovich, Ksenia A, Trukhanov, Sergei V, Trukhanova, Ekaterina L, Pilyushkin, Andrey A, Sombra, Antonio Sergio B, Zhou, Di, Jotania, Rajshree B, Singh, Charanjeet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A pure ferrite and epoxy samples as well as the epoxy/ferrite composites with different 20 wt.%, 30 wt.%, 40 wt.%, and 50 wt.% weight ferrite contents have been prepared by the chemical co-precipitation method. AC-conductivity and dielectric properties such as the dielectric constant and dielectric loss of the prepared samples have been studied. The obtained results showed that the samples had a semiconductor behavior. The dielectric constant of the composites has been calculated theoretically using several models. For the composite sample that contains 20 wt.% of ferrites, these models give satisfactory compliance, while for the composite samples with a higher percentage of nanofillers, more than 30 wt.% theoretical results do not coincide with experimental data. The investigated polymer has very low conductivity, so this type of polymer can be useful for high-frequency applications, which can reduce the losses caused by eddy current. Thus, the prepared samples are promising materials for practical use as elements of microwave devices.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano10030492