Revisiting N, S co-doped carbon materials with boosted electrochemical performance in sodium-ion capacitors: The manipulation of internal electric field
Heteroatom doping has emerged as a prevailing strategy to enhance the storage of sodium ions in carbon materials. However, the underlying mechanism governing the performance enhancement remains undisclosed. Herein, we fabricated N/S co-doped carbon beaded fibers (S-N-CBFs), which exhibited glorious...
Gespeichert in:
Veröffentlicht in: | Nano Research Energy 2024-03, Vol.3 (1), p.e9120098 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heteroatom doping has emerged as a prevailing strategy to enhance the storage of sodium ions in carbon materials. However, the underlying mechanism governing the performance enhancement remains undisclosed. Herein, we fabricated N/S co-doped carbon beaded fibers (S-N-CBFs), which exhibited glorious rate performance and durableness in Na+ storage, showcasing no obvious capacity decay even after 3500 cycles. Furthermore, when used as anodes in sodium-ion capacitors, the S-N-CBFs delivered exceptional results, boasting a high energy density of 225 Wh·kg–1, superior power output of 22500 W·kg–1, and outstanding cycling stability with a capacity attenuation of merely 0.014% per cycle after 4000 cycles at 2 A·g–1. Mechanistic investigations revealed that the incorporation of both pyridinic N and pyrrolic N into the carbon matrix of S-N-CBFs induced internal electric fields (IEFs), with the former IEF being stronger than the latter, in conjunction with the doped S atom. Density functional theory calculations further unveiled that the intensity of the IEF directly influenced the adsorption of Na+, thereby resulting in the exceptional performances of S-N-CBFs as sodium-ion storage materials. This work uncovers the pivotal role of IEF in regulating the electronic structure of carbon materials and enhancing their Na+ storage capabilities, providing valuable insights for the development of more advanced electrode materials. |
---|---|
ISSN: | 2791-0091 2790-8119 |
DOI: | 10.26599/NRE.2023.9120098 |