Time interfaces in bianisotropic media

Wave phenomena in bianisotropic media have been broadly scrutinized in classical electrodynamics because these media offer additional degrees of freedom to engineer electromagnetic waves. However, the majority of investigations concerning such systems have so far been limited to stationary (time-inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review research 2024-03, Vol.6 (1), p.013334, Article 013334
Hauptverfasser: Mirmoosa, M. S., Mostafa, M. H., Norrman, A., Tretyakov, S. A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wave phenomena in bianisotropic media have been broadly scrutinized in classical electrodynamics because these media offer additional degrees of freedom to engineer electromagnetic waves. However, the majority of investigations concerning such systems have so far been limited to stationary (time-invariant) media. Temporally varying the magnetoelectric coupling manifesting bianisotropy engenders a unique prospect to manipulate wave-matter interactions in new ways. In this paper, we theoretically contemplate electromagnetic effects in weakly dispersive bianisotropic media of all classes when the corresponding magnetoelectric coupling parameter suddenly jumps in time, creating a time interface in spatially uniform bianisotropic media. We investigate scattering effects at such time interfaces, revealing novel polarization- and direction-dependent phenomena. Some of these phenomena are validated through the use of simulation software. We anticipate that our work paves the road for further exploration of time-varying bianisotropic metamaterials (metasurfaces) and bianisotropic photonic time crystals, thus opening up interesting possibilities to control wave polarization and amplitude in reciprocal and nonreciprocal manners.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.6.013334