Development of a whole-slide-level segmentation-based dMMR/pMMR deep learning detector for colorectal cancer

To investigate whole-slide-level prediction in the field of artificial intelligence identification of dMMR/pMMR from hematoxylin and eosin (H&E) in colorectal cancer (CRC), we established a segmentation-based dMMR/pMMR deep learning detector (SPEED). Our model was approximately 1,700 times faste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:iScience 2023-12, Vol.26 (12), p.108468-108468, Article 108468
Hauptverfasser: Tong, Zhou, Wang, Yin, Bao, Xuanwen, Deng, Yu, Lin, Bo, Su, Ge, Ye, Kejun, Dai, Xiaomeng, Zhang, Hangyu, Liu, Lulu, Wang, Wenyu, Zheng, Yi, Fang, Weijia, Zhao, Peng, Ding, Peirong, Deng, Shuiguang, Xu, Xiangming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate whole-slide-level prediction in the field of artificial intelligence identification of dMMR/pMMR from hematoxylin and eosin (H&E) in colorectal cancer (CRC), we established a segmentation-based dMMR/pMMR deep learning detector (SPEED). Our model was approximately 1,700 times faster than that of the classification-based model. For the internal validation cohort, our model yielded an overall AUC of 0.989. For the external validation cohort, the model exhibited a high performance, with an AUC of 0.865. The human‒machine strategy further improved the model performance for external validation by an AUC up to 0.988. Our whole-slide-level prediction model provided an approach for dMMR/pMMR detection from H&E whole slide images with excellent predictive performance and less computer processing time in patients with CRC. [Display omitted] •SPEED is a segmentation-based method used to detect dMMR/pMMR from WSIs of CRC•SPEED achieved excellent predictive performance and less computer processing time•A human-machine fusion strategy further improved external validation performance Health sciences; Medicine; Oncology; Health technology
ISSN:2589-0042
2589-0042
DOI:10.1016/j.isci.2023.108468