Proactive Congestion Avoidance for Distributed Deep Learning

This paper presents "Proactive Congestion Notification" (PCN), a congestion-avoidance technique for distributed deep learning (DDL). DDL is widely used to scale out and accelerate deep neural network training. In DDL, each worker trains a copy of the deep learning model with different trai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-12, Vol.21 (1), p.174
Hauptverfasser: Kang, Minkoo, Yang, Gyeongsik, Yoo, Yeonho, Yoo, Chuck
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents "Proactive Congestion Notification" (PCN), a congestion-avoidance technique for distributed deep learning (DDL). DDL is widely used to scale out and accelerate deep neural network training. In DDL, each worker trains a copy of the deep learning model with different training inputs and synchronizes the model gradients at the end of each iteration. However, it is well known that the network communication for synchronizing model parameters is the main bottleneck in DDL. Our key observation is that the DDL architecture makes each worker generate burst traffic every iteration, which causes network congestion and in turn degrades the throughput of DDL traffic. Based on this observation, the key idea behind PCN is to prevent potential congestion by proactively regulating the switch queue length before DDL burst traffic arrives at the switch, which prepares the switches for handling incoming DDL bursts. In our evaluation, PCN improves the throughput of DDL traffic by 72% on average.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21010174