Microfluidic multipoles theory and applications

Microfluidic multipoles (MFMs) have been realized experimentally and hold promise for “open-space” biological and chemical surface processing. Whereas convective flow can readily be predicted using hydraulic-electrical analogies, the design of advanced microfluidic multipole is constrained by the la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-04, Vol.10 (1), p.1781-1781, Article 1781
Hauptverfasser: Goyette, Pierre-Alexandre, Boulais, Étienne, Normandeau, Frédéric, Laberge, Gabriel, Juncker, David, Gervais, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microfluidic multipoles (MFMs) have been realized experimentally and hold promise for “open-space” biological and chemical surface processing. Whereas convective flow can readily be predicted using hydraulic-electrical analogies, the design of advanced microfluidic multipole is constrained by the lack of simple, accurate models to predict mass transport within them. In this work, we introduce the complete solutions to mass transport in multipolar microfluidics based on the iterative conformal mapping of 2D advection-diffusion around a simple edge into dipoles and multipolar geometries, revealing a rich landscape of transport modes. The models are validated experimentally with a library of 3D printed devices and found in excellent agreement. Following a theory-guided design approach, we further ideate and fabricate two classes of spatiotemporally reconfigurable multipolar devices that are used for processing surfaces with time-varying reagent streams, and to realize a multistep automated immunoassay. Overall, the results set the foundations for exploring, developing, and applying open-space microfluidic multipoles. Microfluidic multipoles use arrays of sources and sinks to confine fluids and reagents without the use of physical channels. Here the authors use conformal mappings to predict both convective and diffusive transport in these flows and 3D print multipoles to automate surface-based immunoassays.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-09740-7