Biodegradable Composites Developed from PBAT/PLA Binary Blends and Silk Powder: Compatibilization and Performance Evaluation

Silk fibroin powder and biodegradable polybutylene adipate terephthalate (PBAT)/poly lactide (PLA) blends were melt-mixed together to fabricate natural and synthetic polymers as possible new sources of biomaterials. Morphological observations conducted through scanning electron microscopy indicated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2018-10, Vol.3 (10), p.12412-12421
Hauptverfasser: Nakayama, Daichi, Wu, Feng, Mohanty, Amar K, Hirai, Shinji, Misra, Manjusri
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silk fibroin powder and biodegradable polybutylene adipate terephthalate (PBAT)/poly lactide (PLA) blends were melt-mixed together to fabricate natural and synthetic polymers as possible new sources of biomaterials. Morphological observations conducted through scanning electron microscopy indicated poor dispersion of the silk powder agglomerates, which resulted from strong hydrogen interactions between silk powder chains in the PBAT/PLA matrix. Although the silk powder agglomerates decreased the mechanical properties, as silk powder fractions increased, the ternary blend with 10 wt % silk powder still displayed high impact strength of 108 J/m and tensile modulus of 1.2 GPa. On the basis of mechanical analysis, this blend offered potential applications in fields which required high impact strength. Blends which contained Joncryl experienced a decrease in storage modulus. Furthermore, rheological studies confirmed that the viscosity of the PBAT/PLA/Silk powder blends decreased, which indicated possible weakening of hydrogen bonds between the silk chains, caused by the reaction between the epoxy groups of Joncryl. This reaction provides a possible method to improve the processability of this natural polymer and to improve its distribution in polymer blends.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.8b00823