CONTRACTION-MAPPING ALGORITHM FOR THE EQUILIBRIUM PROBLEM OVER THE FIXED POINT SET OF A NONEXPANSIVE SEMIGROUP
In this paper, we consider the proximal mapping of a bifunction. Under the Lipschitz-type and the strong monotonicity conditions, we prove that the proximal mapping is contractive. Based on this result, we construct an iterative process for solving the equilibrium problem over the fixed point sets o...
Gespeichert in:
Veröffentlicht in: | Mathematical modelling and analysis 2019-01, Vol.24 (1), p.43-61 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the proximal mapping of a bifunction. Under the Lipschitz-type and the strong monotonicity conditions, we prove that the proximal mapping is contractive. Based on this result, we construct an iterative process for solving the equilibrium problem over the fixed point sets of a nonexpansive semigroup and prove a weak convergence theorem for this algorithm. Also, some preliminary numerical experiments and comparisons are presented. |
---|---|
ISSN: | 1392-6292 1648-3510 |
DOI: | 10.3846/mma.2019.004 |