LEDs for the Implementation of Advanced Hydrogenation Using Hydrogen Charge-State Control

Light-induced degradation (LID) of p-type Cz solar cells has plagued the industry for many decades. However, in recent years, new techniques for solving this LID have been developed, with hydrogen passivation of the boron-oxygen defects appearing to be an important contributor to the solution. Advan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Photoenergy 2018-01, Vol.2018 (2018), p.1-6
Hauptverfasser: Li, Hua, Wang, Sisi, Mai, Ly, Ji, Jingjia, Wenham, Stuart R., Chong, CheeMun, Hallam, Brett
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Light-induced degradation (LID) of p-type Cz solar cells has plagued the industry for many decades. However, in recent years, new techniques for solving this LID have been developed, with hydrogen passivation of the boron-oxygen defects appearing to be an important contributor to the solution. Advanced hydrogenation approaches involving the control of the charge state for the hydrogen atoms in silicon to enhance their diffusivity and reactivity are developed and evaluated in this work for commercial application using a prototype industrial tool in conjunction with solar cells manufactured on commercial production lines. This prototype tool, unlike the previous successful laser-based laboratory approaches, is based on the use of LEDs for controlling the charge state of the hydrogen atoms. The illumination from the LEDs is also used in this work to passivate process-induced defects and contamination from the respective production lines with significant improvements in both efficiency and stability. The results indicate that the low-cost LED-based industrial tool performs as well as the laser-based laboratory tool for implementing these advanced hydrogen passivation approaches.
ISSN:1110-662X
1687-529X
DOI:10.1155/2018/2439425