Locating Ax, where A is a subspace of B(H)

Let A be a linear space of operators on a Hilbert space H, x a vector in H, and Ax the subspace of H comprising all vectors of the form Tx with T in A. We discuss, within a Bishop-style constructive framework, conditions under which the projection [Ax] of H on the closure of Ax exists. We derive a g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Logical methods in computer science 2014-06, Vol.10, Issue 2
1. Verfasser: Bridges, Douglas Suth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A be a linear space of operators on a Hilbert space H, x a vector in H, and Ax the subspace of H comprising all vectors of the form Tx with T in A. We discuss, within a Bishop-style constructive framework, conditions under which the projection [Ax] of H on the closure of Ax exists. We derive a general result that leads directly to both the open mapping theorem and our main theorem on the existence of [Ax].
ISSN:1860-5974
1860-5974
DOI:10.2168/LMCS-10(2:9)2014