Locating Ax, where A is a subspace of B(H)
Let A be a linear space of operators on a Hilbert space H, x a vector in H, and Ax the subspace of H comprising all vectors of the form Tx with T in A. We discuss, within a Bishop-style constructive framework, conditions under which the projection [Ax] of H on the closure of Ax exists. We derive a g...
Gespeichert in:
Veröffentlicht in: | Logical methods in computer science 2014-06, Vol.10, Issue 2 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let A be a linear space of operators on a Hilbert space H, x a vector in H,
and Ax the subspace of H comprising all vectors of the form Tx with T in A. We
discuss, within a Bishop-style constructive framework, conditions under which
the projection [Ax] of H on the closure of Ax exists. We derive a general
result that leads directly to both the open mapping theorem and our main
theorem on the existence of [Ax]. |
---|---|
ISSN: | 1860-5974 1860-5974 |
DOI: | 10.2168/LMCS-10(2:9)2014 |