Neural Network Approximation for Time Splitting Random Functions

In this article we present the multivariate approximation of time splitting random functions defined on a box or RN,N∈N, by neural network operators of quasi-interpolation type. We achieve these approximations by obtaining quantitative-type Jackson inequalities engaging the multivariate modulus of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-05, Vol.11 (9), p.2183
Hauptverfasser: Anastassiou, George A., Kouloumpou, Dimitra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article we present the multivariate approximation of time splitting random functions defined on a box or RN,N∈N, by neural network operators of quasi-interpolation type. We achieve these approximations by obtaining quantitative-type Jackson inequalities engaging the multivariate modulus of continuity of a related random function or its partial high-order derivatives. We use density functions to define our operators. These derive from the logistic and hyperbolic tangent sigmoid activation functions. Our convergences are both point-wise and uniform. The engaged feed-forward neural networks possess one hidden layer. We finish the article with a great variety of applications.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11092183