Neural Network Approximation for Time Splitting Random Functions
In this article we present the multivariate approximation of time splitting random functions defined on a box or RN,N∈N, by neural network operators of quasi-interpolation type. We achieve these approximations by obtaining quantitative-type Jackson inequalities engaging the multivariate modulus of c...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2023-05, Vol.11 (9), p.2183 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we present the multivariate approximation of time splitting random functions defined on a box or RN,N∈N, by neural network operators of quasi-interpolation type. We achieve these approximations by obtaining quantitative-type Jackson inequalities engaging the multivariate modulus of continuity of a related random function or its partial high-order derivatives. We use density functions to define our operators. These derive from the logistic and hyperbolic tangent sigmoid activation functions. Our convergences are both point-wise and uniform. The engaged feed-forward neural networks possess one hidden layer. We finish the article with a great variety of applications. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math11092183 |