Voltage Stability Assessment of a Campus DC Microgrid Implemented in Korea as a Blockchain-Based Power Transaction Testbed

Recently, the generalization of P2P (peer-to-peer) technology with enhanced security due to blockchain technology and the expansion of renewable energy-based distributed energy resources have led to blockchain technology being applied in power transactions, thus giving the potential to become a new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2023-11, Vol.16 (21), p.7297
Hauptverfasser: Hwang, Hyeonseok, Lee, Soo Hyoung, Choi, Donghee, Choi, Sangbong, Sung, Backsub
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, the generalization of P2P (peer-to-peer) technology with enhanced security due to blockchain technology and the expansion of renewable energy-based distributed energy resources have led to blockchain technology being applied in power transactions, thus giving the potential to become a new platform for DC microgrid operation. Meanwhile, the voltage of a DC microgrid represents the balance of energy supply and demand and also serves as a stability index. The balance is represented as a steady state; the stability is represented during and after events. This paper examines the stability of the DC microgrid built on a university campus in Korea and, in particular, the blockchain technology-based power transactions performed in the DC microgrid. The test is based on the pre-planned transaction schedule applied in the DC microgrid. The transaction schedule has used day-ahead and real-time bidding data. Although many technologies are included in the project, this paper focuses on the voltage stability of the DC microgrid. In addition, the DC protection is applied and evaluated. To consider general DC protection, the DC breaker was simplified with several IGBTs, diodes, capacitors, and arrestors and was designed to interrupt the fault current within five milliseconds. The stability was evaluated using a PSCAD/EMTDCTM.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16217297