Crystallization study and morphology behaviour of calcium carbonate crystals in aqueous Surfactant-Pluronics® prototype
A facile procedure to fabricate the hydrophobic surfaces of calcium carbonate-polymer composites has been well described. Nano-sized highly ordered CaCO3 clusters i.e. calcite/vaterite have been synthesized by simple precipitation in the presence of template made of cationic surfactant: cetyl trimet...
Gespeichert in:
Veröffentlicht in: | Journal of materials research and technology 2018-10, Vol.7 (4), p.508-514 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A facile procedure to fabricate the hydrophobic surfaces of calcium carbonate-polymer composites has been well described. Nano-sized highly ordered CaCO3 clusters i.e. calcite/vaterite have been synthesized by simple precipitation in the presence of template made of cationic surfactant: cetyl trimethyl ammonium bromide (CTAB) and different non-ionic amphiphilic triblock copolymers comprising of PEO–PPO–PEO units: F98 and F127 commercially known as Pluronics® or Synperonics® or Poloxamers. The morphology of these nano-composites so formed was characterized in detail using spectroscopy, microscopy, diffraction, and scattering techniques. It was found that the surfactant-polymer prototype turned out to be an important parameter to tune and understand the shape-controlled morphology and crystallization in precipitated calcium carbonate (PCC). Our diffraction pattern depicted the presence of calcite/vaterite, while the microscopic investigations indicated the bunch/clusters of calcite (nano-flakes) arranged in stacks which could be attributed to the attractive hydrophobic interaction between the alkyl group of cationic surfactant and -PPO unit of the block copolymer. Similar assumptions were inferred by structural optimization using Gauss View 5.0.9. The scattering measurements described the polydispersity of nano-aggregates based on the scattering intensity. Results expounded the growth mechanism of CaCO3 crystals to be a step-by-step build process with respect to the polarity. |
---|---|
ISSN: | 2238-7854 |
DOI: | 10.1016/j.jmrt.2017.10.005 |