New Traveling Wave Solutions and Interesting Bifurcation Phenomena of Generalized KdV-mKdV-Like Equation

Using the bifurcation method of dynamical systems, we investigate the nonlinear waves and their limit properties for the generalized KdV-mKdV-like equation. We obtain the following results: (i) three types of new explicit expressions of nonlinear waves are obtained. (ii) Under different parameter co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematical physics 2021, Vol.2021, p.1-6
Hauptverfasser: Chen, Yiren, Li, Shaoyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using the bifurcation method of dynamical systems, we investigate the nonlinear waves and their limit properties for the generalized KdV-mKdV-like equation. We obtain the following results: (i) three types of new explicit expressions of nonlinear waves are obtained. (ii) Under different parameter conditions, we point out these expressions represent different waves, such as the solitary waves, the 1-blow-up waves, and the 2-blow-up waves. (iii) We revealed a kind of new interesting bifurcation phenomenon. The phenomenon is that the 1-blow-up waves can be bifurcated from 2-blow-up waves. Also, we gain other interesting bifurcation phenomena. We also show that our expressions include existing results.
ISSN:1687-9120
1687-9139
DOI:10.1155/2021/4213939