D-dCNN: A Novel Hybrid Deep Learning-Based Tool for Vibration-Based Diagnostics
This paper develops a novel hybrid feature learner and classifier for vibration-based fault detection and isolation (FDI) of industrial apartments. The trained model extracts high-level discriminative features from vibration signals and predicts equipment state. Against the limitations of traditiona...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2021-09, Vol.14 (17), p.5286 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper develops a novel hybrid feature learner and classifier for vibration-based fault detection and isolation (FDI) of industrial apartments. The trained model extracts high-level discriminative features from vibration signals and predicts equipment state. Against the limitations of traditional machine learning (ML)-based classifiers, the convolutional neural network (CNN) and deep neural network (DNN) are not only superior for real-time applications, but they also come with other benefits including ease-of-use, automated feature learning, and higher predictive accuracies. This study proposes a hybrid DNN and one-dimensional CNN diagnostics model (D-dCNN) which automatically extracts high-level discriminative features from vibration signals for FDI. Via Softmax averaging at the output layer, the model mitigates the limitations of the standalone classifiers. A diagnostic case study demonstrates the efficiency of the model with a significant accuracy of 92% (F1 score) and extensive comparative empirical validations. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en14175286 |