Genetic circuits to engineer tissues with alternative functions

Persistent and complex problems arising with respect to human physiology and pathology have led to intense investigation into therapies and tools that permit more targeted outcomes and biomimetic responses to pathological conditions. A primary goal in mammalian synthetic biology is to build genetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biological engineering 2019-05, Vol.13 (1), p.39-39, Article 39
Hauptverfasser: Healy, C P, Deans, T L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Persistent and complex problems arising with respect to human physiology and pathology have led to intense investigation into therapies and tools that permit more targeted outcomes and biomimetic responses to pathological conditions. A primary goal in mammalian synthetic biology is to build genetic circuits that exert fine control over cell behavior for next-generation biomedical applications. In pursuit of this, synthetic biologists have engineered cells endowed with genetic circuits with sensor that are capable of reacting to a variety of stimuli and responding with targeted behavior. Here, we highlight how synthetic biology approaches are being used to program cells with novel functions for therapeutic applications, and how they can be used in stem cells to improve differentiation outcomes. These approaches open the possibilities for engineering synthetic tissues for employing personalized medicine and to develop next-generation biomedical therapies.
ISSN:1754-1611
1754-1611
DOI:10.1186/s13036-019-0170-7