Designing optimal prototype filters for maximally decimated Cosine Modulated filter banks with rapid convergence
An analytic design of a prototype filter for M-channel maximally decimated cosine-modulated Near Perfect Reconstruction (NPR) filter banks is proposed in this work. The prototype filter is created using the least-square (CLS) method with weighted constraints, which is one-dimensional and requires si...
Gespeichert in:
Veröffentlicht in: | Heliyon 2024-06, Vol.10 (11), p.e31912-e31912, Article e31912 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An analytic design of a prototype filter for M-channel maximally decimated cosine-modulated Near Perfect Reconstruction (NPR) filter banks is proposed in this work. The prototype filter is created using the least-square (CLS) method with weighted constraints, which is one-dimensional and requires single-parameter optimization. Compared to existing approaches, this suggested method achieves rapid convergence by analytically determining the optimal step size, ensuring the 3 dB cutoff frequency at π/2 M. The simulation results for design examples outperform the techniques in the available literature in terms of amplitude and aliasing distortion, reaching distortion around 2.4489 × 10−4 and 3.4907 × 10−9, respectively. This optimization algorithm's usefulness is further demonstrated with the sub-band coding of ECG signals. Implementing optimal prototype filters has tangible real-world effects, especially in critical sectors like healthcare and communications, improving diagnostics accuracy, data transmission efficiency, and overall performance. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e31912 |