Inference of single-cell network using mutual information for scRNA-seq data analysis
With the advance in single-cell RNA sequencing (scRNA-seq) technology, deriving inherent biological system information from expression profiles at a single-cell resolution has become possible. It has been known that network modeling by estimating the associations between genes could better reveal dy...
Gespeichert in:
Veröffentlicht in: | BMC bioinformatics 2024-09, Vol.25 (Suppl 2), p.292-20, Article 292 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the advance in single-cell RNA sequencing (scRNA-seq) technology, deriving inherent biological system information from expression profiles at a single-cell resolution has become possible. It has been known that network modeling by estimating the associations between genes could better reveal dynamic changes in biological systems. However, accurately constructing a single-cell network (SCN) to capture the network architecture of each cell and further explore cell-to-cell heterogeneity remains challenging.
We introduce SINUM, a method for constructing the SIngle-cell Network Using Mutual information, which estimates mutual information between any two genes from scRNA-seq data to determine whether they are dependent or independent in a specific cell. Experiments on various scRNA-seq datasets with different cell numbers based on eight performance indexes (e.g., adjusted rand index and F-measure index) validated the accuracy and robustness of SINUM in cell type identification, superior to the state-of-the-art SCN inference method. Additionally, the SINUM SCNs exhibit high overlap with the human interactome and possess the scale-free property.
SINUM presents a view of biological systems at the network level to detect cell-type marker genes/gene pairs and investigate time-dependent changes in gene associations during embryo development. Codes for SINUM are freely available at https://github.com/SysMednet/SINUM . |
---|---|
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/s12859-024-05895-3 |