Image set preparation: A platform to prepare a myoelectric signal to train a CNN
Derived from the good performance in the classification of surface Electromyography signals using CNN for its application in prosthetics, rehabilitation, and medicine, we present a platform that, from a surface Electromyography, performs the necessary digital processing to generate an image database...
Gespeichert in:
Veröffentlicht in: | SoftwareX 2023-07, Vol.23, p.101509, Article 101509 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Derived from the good performance in the classification of surface Electromyography signals using CNN for its application in prosthetics, rehabilitation, and medicine, we present a platform that, from a surface Electromyography, performs the necessary digital processing to generate an image database to train a Convolutional Neural Network. This platform requires inputting the protocol parameters under which the myoelectric signal was acquired. In addition, it allows selection among four groups of Time-Domain features and four types of images that have shown good performance (above 90%) in the current literature. The platform generates images in separate folders for each movement according to the selected parameters. This work offers a valuable tool in classification using surface Electromyography and Convolutional Neural Networks, enabling more efficient customization and optimization of training processes. |
---|---|
ISSN: | 2352-7110 2352-7110 |
DOI: | 10.1016/j.softx.2023.101509 |