Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte
Recently, poly(ethylene oxide) (PEO)-based solid polymer electrolytes have been attracting great attention, and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries. In this article, a novel sandwich s...
Gespeichert in:
Veröffentlicht in: | Nano materials science 2024-02, Vol.6 (1), p.60-67 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, poly(ethylene oxide) (PEO)-based solid polymer electrolytes have been attracting great attention, and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries. In this article, a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries. The PEO-based composite electrolyte is fabricated by hot-pressing PEO, LiTFSI and Ti3C2Tx MXene nanosheets into glass fiber cloth (GFC). The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties, good electrochemical stability, and high lithium-ion migration number, which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene. Such as, the GFC@PEO-1 wt% MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa, which are increased by 1205% and 6048% over those of PEO. Meanwhile, the ionic conductivity of GFC@PEO-1 wt% MXene at 60 °C reaches 5.01 × 10−2 S m−1, which is increased by around 200% compared with that of GFC@PEO electrolyte. In addition, the Li/Li symmetric battery based on GFC@PEO-1 wt% MXene electrolyte shows an excellent cycling stability over 800 h (0.3 mA cm−2, 0.3 mAh cm−2), which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt% MXene electrolyte with Li anode. Furthermore, the solid-state Li/LiFePO4 battery with GFC@PEO-1 wt% MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g−1 in a wide temperature range of 25–60 °C, and an excellent capacity retention rate. The developed sandwich structured GFC@PEO-1 wt% MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries. |
---|---|
ISSN: | 2589-9651 2096-6482 2589-9651 |
DOI: | 10.1016/j.nanoms.2023.01.001 |