Wavelet Analysis and Radial Basis Function Neural Network Based Stability Status Prediction Scheme

This paper presents a technique for predicting the transient stability status of a power system. Bus voltages of system generators are used as input parameter. The bus voltages are processed using wavelet transform. Daubechies 8 mother wavelet is employed to extract wavelet entropy of detail 1 coeff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Jurnal nasional teknik elektro 2018-11, Vol.7 (3), p.146-152
Hauptverfasser: Frimpong, Emmanuel Asuming, Okyere, Philip Yaw, Asumadu, Johnson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a technique for predicting the transient stability status of a power system. Bus voltages of system generators are used as input parameter. The bus voltages are processed using wavelet transform. Daubechies 8 mother wavelet is employed to extract wavelet entropy of detail 1 coefficients. The sum of wavelet entropies is used as input to a trained radial basis function neural network which predicts the transient stability status. The IEEE 39-bus test system was used to validate the effectiveness and applicability of the technique. The technique is simple to apply and can be implemented in real-time. The prediction accuracy was found to be 86.5% for 200 test cases.
ISSN:2302-2949
2407-7267
DOI:10.25077/jnte.v7n3.559.2018