Wavelet Analysis and Radial Basis Function Neural Network Based Stability Status Prediction Scheme
This paper presents a technique for predicting the transient stability status of a power system. Bus voltages of system generators are used as input parameter. The bus voltages are processed using wavelet transform. Daubechies 8 mother wavelet is employed to extract wavelet entropy of detail 1 coeff...
Gespeichert in:
Veröffentlicht in: | Jurnal nasional teknik elektro 2018-11, Vol.7 (3), p.146-152 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a technique for predicting the transient stability status of a power system. Bus voltages of system generators are used as input parameter. The bus voltages are processed using wavelet transform. Daubechies 8 mother wavelet is employed to extract wavelet entropy of detail 1 coefficients. The sum of wavelet entropies is used as input to a trained radial basis function neural network which predicts the transient stability status. The IEEE 39-bus test system was used to validate the effectiveness and applicability of the technique. The technique is simple to apply and can be implemented in real-time. The prediction accuracy was found to be 86.5% for 200 test cases. |
---|---|
ISSN: | 2302-2949 2407-7267 |
DOI: | 10.25077/jnte.v7n3.559.2018 |