Investigating the Atmospheric Mass Loss of the Kepler-105 Planets Straddling the Radius Gap
An intriguing pattern among exoplanets is the lack of detected planets between approximately 1.5 R ⊕ and 2.0 R ⊕ . One proposed explanation for this “radius gap” is the photoevaporation of planetary atmospheres, a theory that can be tested by studying individual planetary systems. Kepler-105 is an i...
Gespeichert in:
Veröffentlicht in: | The Astronomical journal 2024-02, Vol.167 (2), p.84 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An intriguing pattern among exoplanets is the lack of detected planets between approximately 1.5
R
⊕
and 2.0
R
⊕
. One proposed explanation for this “radius gap” is the photoevaporation of planetary atmospheres, a theory that can be tested by studying individual planetary systems. Kepler-105 is an ideal system for such testing due to the ordering and sizes of its planets. Kepler-105 is a Sun-like star that hosts two planets straddling the radius gap in a rare architecture with the larger planet closer to the host star (
R
b
= 2.53 ± 0.07
R
⊕
,
P
b
= 5.41 days,
R
c
= 1.44 ± 0.04
R
⊕
,
P
c
= 7.13 days). If photoevaporation sculpted the atmospheres of these planets, then Kepler-105b would need to be much more massive than Kepler-105c to retain its atmosphere, given its closer proximity to the host star. To test this hypothesis, we simultaneously analyzed radial velocities and transit-timing variations of the Kepler-105 system, measuring disparate masses of
M
b
= 10.8 ± 2.3
M
⊕
(
ρ
b
= 3.68 ± 0.84 g cm
−3
) and
M
c
= 5.6 ± 1.2
M
⊕
(
ρ
c
= 10.4 ± 2.39 g cm
−3
). Based on these masses, the difference in gas envelope content of the Kepler-105 planets could be entirely due to photoevaporation (in 76% of scenarios), although other mechanisms like core-powered mass loss could have played a role for some planet albedos. |
---|---|
ISSN: | 0004-6256 1538-3881 |
DOI: | 10.3847/1538-3881/ad19c6 |