Optimization of a “Social-Ecological” System Pattern from the Perspective of Ecosystem Service Supply and Demand: A Case Study of Jilin Province
This study establishes and refines a social-landscape ecological security pattern that integrates the demand and supply of ecosystem services, providing a substantial foundation for the ecological restoration of territorial spaces. This foundation is crucial for enhancing the effectiveness of “socia...
Gespeichert in:
Veröffentlicht in: | Land (Basel) 2024-10, Vol.13 (10), p.1716 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study establishes and refines a social-landscape ecological security pattern that integrates the demand and supply of ecosystem services, providing a substantial foundation for the ecological restoration of territorial spaces. This foundation is crucial for enhancing the effectiveness of “social–ecological” systems in achieving sustainable development. Jilin Province, serving as a national ecological security buffer and experiencing rapid economic growth, exhibits a significant spatial imbalance between social and economic progress and ecological conservation. The balance of ecosystem service demand and supply is pivotal in this context, making Jilin Province an ideal study area. We employed a multifaceted approach, including MSPA, the InVEST model, landscape connectivity assessment, circuit theory, and ecological network integrity evaluation, to elucidate the spatial disparities between the demand and supply of ecosystem services. We then developed and optimized social and landscape ecological security patterns to meet human demands and safeguard ecological integrity, thereby promoting the sustainable development of “social–ecological” systems. The key findings are as follows: (1) The supply of ecosystem services shows a clear spatial gradient, with lower values in the west and higher in the east, while demand is concentrated in the central region with lower values in the east and west, indicating a pronounced spatial mismatch in Jilin Province. (2) The landscape ecological security pattern includes 18 barrier points, 33 pinch points, 166 ecological corridors, and 101 ecological sources. (3) The social–ecological security pattern comprises 119 demand sources and 150 supply–demand corridors. (4) The study introduces 14 supply–demand nodes and 47 optimization corridors, proposing zoning schemes for the eastern core protection area, the central ecological demand area, and the western core restoration area. Additionally, recommendations are concerning the optimization of the “social–ecological” system pattern. This research advances the theoretical understanding of “social–ecological” system development in Jilin Province and offers insights for more harmonized development strategies. |
---|---|
ISSN: | 2073-445X 2073-445X |
DOI: | 10.3390/land13101716 |